Influence of Magnetic Losses on Maximum Power Limits of Synchronous Permanent Magnet Drives in Flux-weakening Mode

نویسندگان

  • Emmanuel Hoang
  • Mohamed Gabsi
  • Michel Lécrivain
  • Bernard Multon
  • Emmanuel HOANG
  • Mohamed GABSI
  • Michel LÉCRIVAIN
  • Bernard MULTON
چکیده

The aim of this paper is to present the structure of a new synchronous machine with stator ferrite permanent magnets and a salient passive rotor (a robust and low-cost technology) which, when supplied with current by a threephase bridge converter, produces continuous torque. This feature serves to place our machine on a par with the best synchronous machines available (e.g. high-energy rotor magnets with flux concentration). Furthermore, the electrical characteristics of this machine make it possible to apply the well-known flux weakening technique, which enhances the performance of the entire energy-conversion system. In theory, an operating area at constant power with unlimited speed can be obtained merely by taking into account the ohmic tension drops in the coils. Experimental results demonstrate that taking both magnetic losses and windage losses into account is necessary in order to identify the maximum mechanical output power characteristics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new optimization of segmented Interior permanent magnet synchronous motor based on increasing flux weakening range and output torque

In this paper a new optimization function for increasing the flux weakening range and output torque value of segmented interior permanent magnet synchronous motor (SIPMSM) is presented. In proposed objective function normalized characteristic current and saliency ratio are considered as two optimization variables during optimization process. The focus of this paper is rotor structure design suc...

متن کامل

Comprehensive Design Procedure and Manufacturing of Permanent Magnet Assisted Synchronous Reluctance Motor

Combining the main advantages of the permanent magnet synchronous motors and pure synchronous reluctance motors (SynRM), permanent magnet assisted synchronous reluctance motor (PMaSynRM) has been considered as a promising alternative to the conventional induction motors. In this paper, utilizing a macroscopic design parameter, called insulation ratio along the q-axis, and based on the magnetic ...

متن کامل

A Novel High-Performance Field-Weakening Control for Axial Flux-Switching Permanent-Magnet Motor

By combining the field-weakening control principle of a new axial flux-switching permanent-magnet motor (AFFSSPM) with the space vector pulse width modulation (SVPWM) and maximum torque per voltage (MTPV) control principle, a novel field-weakening control strategy for AFFSSPM is proposed in this paper. In the first stage of the field-weakening, the difference between the reference voltage updat...

متن کامل

Inner Permanent Magnet Synchronous Machine Optimization for HEV Traction Drive Application in Order to Achieve Maximum Torque per Ampere

Recently, Inner permanent magnet (IPM) synchronous machines have been introduced as a possible traction motor in hybrid electric vehicle (HEV) and traction applications due to their unique merits. In order to achieve maximum torque per ampere (MTPA), optimization of the motor geometry parameters is necessary. This paper Presents a design method to achieve minimum volume, MTPA and minimum ...

متن کامل

Experimental and 3D Finite Element Analysis of a Slotless Air-Cored Axial Flux PMSG for Wind Turbine Application

In this research paper, the performance of an air-cored axial flux permanent magnet synchronous generator is evaluated for low speed, direct drive applications using 3D finite element modeling and experimental tests. The structure of the considered machine consists of double rotor and coreless stator, which results in the absence of core losses, reduction of stator weight and elimination of cog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017